
Interview | 21 | Interview

Axel Schneider, Continental Engineering Services GmbH

For this interview, we spoke with Axel Schneider from Continental Engineering Services GmbH
located in Frankfurt. As Senior Engineer for Virtual Testing & Simulation, he works for the Business
Center Driver Assistance and Autonomous Driving. We talked about how a modern development
environment combined with virtual test driving helps to make vehicle development more
efficient. At the same time, especially with regard to more and more complex software functions,
the goal is to ensure the greatest test coverage possible.

Using a Modern Software
Development Environment
to Achieve Maximum Test Coverage

We are very pleased that you are
taking the time to talk with us.
Could you introduce us to your
field of work and present the
goals your department pursues?

Schneider: Of course. Personally,
over the past years, I have focused
on the set up of SIL test systems
and the integration of different
algorithms for series products. The
key topics here were continuous
testing, automation and cloud
simulation.

Our department offers outside and
intragroup customers solutions for
tests that are in part virtual. We build
up test benches with different levels
of integration, starting from SIL
over HIL up to VIL. In many projects,
we perform the tests as well – tho-
se are mainly projects in the field
of advanced driver assistance and
brake systems. But we are also re-
sponsible for simulation studies
and support intragroup projects
with our expertise in the area of
test strategies. All projects of course
have a virtual portion.

The software part in vehicles has
rapidly increased over the past
years. At Apply & Innovate 2022,
you presented a project that
Continental Engineering Services
implemented with regard to the
resulting challenges. What was
the aim of this project?

Schneider: Indeed, at Apply &
Innovate I presented a CI/CT/CD
environment developed by us. That
is short for continuous integration,
testing and delivery, an automated
development method that is well-
established in the software industry.

This environment we developed
also uses CarMaker as an open
integration and test platform and
allows to carry out different test steps.
These steps include for example
statistical code analysis, build and
integration tests, unit tests and, last
but not least, functional tests. The
aim is to achieve a high code quality
and to test the series algorithm
components systematically.

This subsequently leads to a higher
test coverage and prevents bugs.
Or, you discover bugs at a much

earlier point in time, which leads to
a higher maturity in early software
versions. The manual quality on
code level is therefore significantly
increased with a broader and more
extensive test strategy – which then
automatically leads to faster and
better software development.

To achieve a higher quality, there
are already many established
processes used in software de-
velopment. Can those be adapted
for vehicle development?

Schneider: Definitely. The me-
thods and processes that are
used to develop any other soft-
ware can, to a certain extent, also
be applied to the development of
automotive software. When de-
veloping open-source software,
every programming language ba-
sically has its own ecosystem with
tools accompanying the develop-
ment, for example for the already
mentioned statistical code analysis
or functional tests. These tools help
to develop powerful open-source li-
braries that are integrated in billions
of devices.

These successful examples can be
used as a blue print for company-
-specific methods and processes.
CI/CT/CD is a long-established
method in open-source software
development processes and
particularly supports developers by
automating repetitive tasks such as
code analysis and software tests.

In your opinion, which criteria
are particularly important to
successfully implement this kind
of project?

Schneider: First of all, it needs to be
said that every project or tool has
different requirements and specific
framework conditions. Hence there
is no text-book approach to this.
But in my opinion, there are success
factors that should be taken into
account for design and basic criteria.

The most important thing is that
the users accept the toolchain as
a means of support. It has to be
clear to them that its purpose is not
surveillance. Our experiences have
shown that only accepted tools
perceived as a support are actually

actively used. What is also important
is the period of time developers have
to wait to get the results. They have
to be able to know quickly how the
analysis of their newly developed
code went and if the tests were
successful. It is all about keeping the
timeframe short so that the focus
stays on the developers.

Can you clarify which criteria
are decisive for this kind of code
analysis?

Schneider: Yes, of course. In this
process, transparency as well as
reproducibility of results matter
most. If it is not known based on
which criteria the code is analyzed,
this can very quickly result in
discouragement. Developers need
to be able to reproduce all steps
that are performed automatically
in the toolchain one by one on their
computers.

Personally, I also think it is very
important that all proprietary tools
in this context are developed with a
CI/CT toolchain – not only the final
product that is later send out to
the customer. The proprietary tools
supporting the developers in their
work should also be of high quality.

There are other, non-measurable
criteria that have an impact on it,
too. In our department, introducing
such a toolchain has for example
somewhat changed our work
culture. Due to the implementation
of very objective criteria for the
evaluation of the developed code,
this has opened up the possibility
for discussions. We have developed
review processes that presume a
cooperative exchange. Therefore,
multiple employees are always
involved in an implementation.

With your experience, would you
say that objective and measurable
criteria increase the trust in soft-
ware development processes?
Maybe also especially in the auto-
motive and supplier industry, that
has by tendency less of a software
background?

Schneider: Definitely. Until recently,
the automotive industry was just
not an industry in which a lot of
software was developed. In the past,

Interview

3 | Interview

the business model was strictly
limited to producing and selling
vehicles – software was always
considered like an accessory that
had to be delivered with it. But
the automotive industry has been
changing for years now and soft-
ware has an ever-growing share in
the value creation.

This means that, step by step, OEMs
and suppliers are becoming soft-
ware companies – and in this type
of company, there is no way around
moving with the times and using
modern development processes.

Which role does CarMaker play in
the automated CI/CT/CD process
chain?

Schneider: Because we are develo-
ping software for physical vehicles,
we need a virtual counterpart in
which we can integrate the driving
functions under test – that is the
virtual prototype. CarMaker as an
open integration and test platform
is a key element without which we
would not be able to feed our soft-
ware with valid data. Functional
tests of the driving function would
hardly be possible in a real-world

environment or even not at all for
some cases. With CarMaker, the
high modularity and the option of
extensive parameterizability are
particularly helpful.

Could you please specify the mea-
sures that you are taking to achie-
ve maximum test coverage?

Schneider: Sure – that is in principle
quite simple. In our process, we have
linked the requirements that need to
be fulfilled to a pre-defined number
of test cases. When designing the
tests, the vehicle parameterization
and test scenario can be varied and
adapted at pre-defined positions via
a set of parameters. With parameter
variations we are then able to use
a scaled single scenario with only
one vehicle model in an extremely
high number of test cases. When all
tests are successfully carried out, the
requirement is accomplished.

This method has proved to be very
successful for us. In one project,
we managed to generate 50,000
different tests from 24 maneuvers.
Therefore, we only need to actively
maintain a few maneuvers and the
complexity stays manageable.

What do these parameter
variations look like: Do you make
small parameter changes on a
regular basis, and generate many
different tests accordingly on this
basis?

Schneider: Correct. We can for
example imagine a test case in
which we want to test the detection
of other road users around the
own vehicle. Minimal changes
in the movements of those road
users alone result in a tremendous
number of possible scenarios that
all need to be validated. Therefore,
we quickly reach the number of
50,000 tests.

Those are impressive numbers.
How do you provide the necessary
computing power for such a
high number of tests, keeping a
manageable time effort in mind?

Schneider: As to the technical
implementation, we decided to
scale the simulation with CarMaker
in the cloud. This allows us to add or
remove any number of resources to
our liking – we can hence cover high
load peaks at a low cost.

Can you already predict how this
topic is going to evolve in the near
future?

Schneider: My opinion aligns with
the estimations of experts that I
discuss the subject of virtual tests
with: Virtual methods are quickly
gaining ground. Especially when you
look at SAE level 3 driving functions,
the equivalent of automated driving
functions, they are mainly released
virtually and only isolated tests are
performed in the physical vehicle. As
a matter of fact, the number of the
tests to be expected also does not
allow any other conclusion either.

Thank you for taking the time and
for this insightful interview.

Interview partner Axel Schneider speaking with Henning Kemper from IPG Automotive

